Integrable maps in 4D and modified Volterra lattices

Author:

Hone A. N. W.,Roberts J. A. G.,Vanhaecke P.,Zullo F.

Abstract

In recent work, we presented the construction of a family of difference equations associated with the Stieltjes continued fraction expansion of a certain function on a hyperelliptic curve of genus $g$. As well as proving that each such discrete system is an integrable map in the Liouville sense, we also showed it to be an algebraic completely integrable system. In the discrete setting, the latter means that the generic level set of the invariants is an affine part of an abelian variety, in this case the Jacobian of the hyperelliptic curve, and each iteration of the map corresponds to a translation by a fixed vector on the Jacobian. In addition, we demonstrated that, by combining the discrete integrable dynamics with the flow of one of the commuting Hamiltonian vector fields, these maps provide genus $g$ algebro-geometric solutions of the infinite Volterra lattice, which justified naming them Volterra maps, denoted ${\cal V}_g$. The original motivation behind our work was the fact that, in the particular case $g=2$, we could recover an example of an integrable symplectic map in four dimensions found by Gubbiotti, Joshi, Tran and Viallet, who classified birational maps in 4D admitting two invariants (first integrals) with a particular degree structure, by considering recurrences of fourth order with a certain symmetry. Hence, in this particular case, the map ${\cal V}_2$ yields genus two solutions of the Volterra lattice. The purpose of this note is to point out how two of the other 4D integrable maps obtained in the classification of Gubbiotti et al. correspond to genus two solutions of two different forms of the modified Volterra lattice, being related via a Miura-type transformation to the $g=2$ Volterra map ${\cal V}_2$. We dedicate this work to a dear friend and colleague, Decio Levi.

Funder

UK Research and Innovation

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3