Revealing systematic errors in hole drilling measurements through a calibration bench: the case of zero-depth data

Author:

Beghini Marco1ORCID,Grossi Tommaso1ORCID,Santus Ciro1ORCID,Valentini Emilio2

Affiliation:

1. University of Pisa - Università di Pisa

2. SINT Technology Srl

Abstract

An accurate estimation of the measurement error in the hole drilling method is needed to choose an appropriate level of regularization and to perform a sensitivity analysis on the stress results. The latest release of ASTM E837 standard for the hole drilling method includes a procedure aimed at estimatingthe standard deviation of the random error component on strain measurements, proposed by Schajer. Nevertheless, strain measurements are also affected to some extent by systematic errors which are not included in the estimation and need to be compensated. For example, an error in the rosette gage factor orin the identification of the zero-depth datum systematically affects all strain measurements in a strongly correlated fashion. This paper describes a calibration bench, designed to superimpose a reference bending stress distribution on a given specimen while simultaneously performing a hole drilling measurement.Since the reference solution is known a priori and shares the measurement instrumentation, the hole geometry and the stepping process with the actual residual stress distribution, the bench provides the user with a direct validation of the obtained accuracy. In addition, strategies aimed at compensating systematicerrors can be tested on the reference solution and then applied on the residual stress evaluation. The imperfect hole geometry and drilling alignment are proven to cause a significant underestimation of stresses near the surface, as they lead to an incorrect identification of the zero-depth datum. It is shown that this effect can be corrected through the proposed calibration bench.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3