Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds

Author:

Martin Adrien123,Opreni Andrea4,Vizzaccaro Alessandra5ORCID,Debeurre Marielle67,Salles Loic89ORCID,Frangi Attilio4ORCID,Thomas Olivier67ORCID,Touzé Cyril123ORCID

Affiliation:

1. Institut des Sciences de la mécanique et Applications industrielles

2. École Nationale Supérieure de Techniques Avancées

3. Institut Polytechnique de Paris

4. Politecnico di Milano [Milan]

5. University of Bristol [Bristol]

6. Laboratoire d’Ingénierie des Systèmes Physiques et Numériques

7. HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université

8. Imperial College London

9. Université de Liège

Abstract

The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional invariant-based span of the phase space. It can be directly applied to finite element problems. When the development is performed using an arbitrary order asymptotic expansion, it provides an efficient reduced-order modeling strategy for geometrically nonlinear structures. It is here applied to the case of rotating structures featuring centrifugal effect. A rotating cantilever beam with large amplitude vibrations is first selected in order to highlight the main features of the method. Numerical results show that the method provides accurate reduced-order models (ROMs) for any rotation speed and vibration amplitude of interest with a single master mode, thus offering remarkable reduction in the computational burden. The hardening/softening transition of the fundamental flexural mode with increasing rotation speed is then investigated in detail and a ROM parametrised with respect to rotation speed and forcing frequencies is detailed. The method is then applied to a twisted plate model representative of a fan blade, showing how the technique can handle more complex structures. Hardening/softening transition is also investigated as well as interpolation of ROMs, highlighting the efficacy of the method.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Reference80 articles.

1. Substructuring in Engineering Dynamics

2. Atkinson, K. (1989). An Introduction to Numerical Analysis. 2nd ed. Wiley. isbn: 9780471624899. Bathe, K. J. (1996). Finite Element Procedures. Prentice-Hall.

3. Modeling rotorcraft dynamics with finite element multibody procedures

4. Parallel Harmonic Balance Method for Analysis of Nonlinear Dynamical Systems

5. Parallel Harmonic Balance Method for Analysis of Nonlinear Dynamical Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3