Online Shopper Intention Analysis Using Conventional Machine Learning And Deep Neural Network Classification Algorithm

Author:

Cucu Ika Agustyaningrum ,Haris Muhammad,Aryanti Riska,Misriati Titik

Abstract

The use of e-commerce throughout the world in recent years is very rapid. The continuous increase in sales shows that e-commerce has huge market potential. Store profits are derived from the process of assessing data to identify and classify online shopper intentions. The process of assessing the data uses conventional machine learning algorithms and deep neural networks. Comparison of algorithms in this study using the python programming language by knowing the value of Accuracy, F1-Score, Precision, Recall, and ROC AUC. The test results show that the accuracy of the deep neural network algorithm is 98.48%, the F1 score is 95.06%, precision is 97.36%, recall is 96.81% and AUC is 96.81%. So, based on this research, deep neural network data mining techniques can be an effective algorithm for online shopper intention data sets with cross-validation folds of 10, six hidden layer decoder-encoder variations, relu-sigmoid activation function, adagrad optimizer, and learning rate of 0.01 and no dropout. The value of this deep neural network algorithm is quite dominant compared to conventional machine learning algorithms and related research.

Publisher

Badan Litbang SDM Kementerian Komunikasi dan Informatika

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting Online Shoppers Purchase Intentions with Cat Boost Classifier;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. LRFS: Online Shoppers’ Behavior-Based Efficient Customer Segmentation Model;IEEE Access;2024

3. Impact of ChatGPT on Educational Strategies for Future-Proof Business Data Analyst: Machine Learning Code Generation in Teaching and Learning;Lecture Notes in Operations Research;2024

4. IndoBERT Based Data Augmentation for Indonesian Text Classification;2023 International Conference on Information Technology Research and Innovation (ICITRI);2023-08-16

5. Prediction of Buying Intention: Factors Affecting Online Shopping;2023 International Conference on Next-Generation Computing, IoT and Machine Learning (NCIM);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3