Potential Predictors for Deterioration of Renal Function After Transfusion

Author:

Tschoellitsch Thomas1,Moser Philipp2,Maletzky Alexander2,Seidl Philipp3,Böck Carl4,Roland Theresa3,Ludwig Helga3,Süssner Susanne5,Hochreiter Sepp3,Meier Jens1

Affiliation:

1. Department of Anesthesiology and Critical Care Medicine, Kepler University, Hospital and Johannes Kepler University, Linz, Austria

2. Research Unit Medical Informatics, RISC Software GmbH, Hagenberg im Mühlkreis, Austria

3. ELLIS Unit Linz, Linz Institute of Technology Artificial Intelligence Lab, Institute for Machine Learning, Johannes Kepler University, Linz, Austria

4. Institute of Signal Processing, Johannes Kepler University, Linz, Austria

5. Transfusion Service and Blood Bank, Austrian Red Cross, District Branch of Upper Austria, Linz, Austria.

Abstract

BACKGROUND: Transfusion of packed red blood cells (pRBCs) is still associated with risks. This study aims to determine whether renal function deterioration in the context of individual transfusions in individual patients can be predicted using machine learning. Recipient and donor characteristics linked to increased risk are identified. METHODS: This study was registered at ClinicalTrials.gov (NCT05466370) and was conducted after local ethics committee approval. We evaluated 3366 transfusion episodes from a university hospital between October 31, 2016, and August 31, 2020. Random forest models were tuned and trained via Python auto-sklearn package to predict acute kidney injury (AKI). The models included recipients’ and donors’ demographic parameters and laboratory values, donor questionnaire results, and the age of the pRBCs. Bootstrapping on the test dataset was used to calculate the means and standard deviations of various performance metrics. RESULTS: AKI as defined by a modified Kidney Disease Improving Global Outcomes (KDIGO) criterion developed after 17.4% transfusion episodes (base rate). AKI could be predicted with an area under the curve of the receiver operating characteristic (AUC-ROC) of 0.73 ± 0.02. The negative (NPV) and positive (PPV) predictive values were 0.90 ± 0.02 and 0.32 ± 0.03, respectively. Feature importance and relative risk analyses revealed that donor features were far less important than recipient features for predicting posttransfusion AKI. CONCLUSIONS: Surprisingly, only the recipients’ characteristics played a decisive role in AKI prediction. Based on this result, we speculate that the selection of a specific pRBC may have less influence than recipient characteristics.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3