Artificial Intelligence in Anesthetic Care: A Survey of Physician Anesthesiologists

Author:

Estrada Alamo Carlos E.1,Diatta Fortunay2,Monsell Sarah E.3,Lane-Fall Meghan B.4

Affiliation:

1. Department of Anesthesiology, Virginia Mason Medical Center, Seattle, Washington

2. Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut

3. Department of Biostatistics, University of Washington, Hans Rosling Center for Population Health, Seattle, Washington

4. Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania.

Abstract

BACKGROUND: This study explored physician anesthesiologists’ knowledge, exposure, and perceptions of artificial intelligence (AI) and their associations with attitudes and expectations regarding its use in clinical practice. The findings highlight the importance of understanding anesthesiologists’ perspectives for the successful integration of AI into anesthesiology, as AI has the potential to revolutionize the field. METHODS: A cross-sectional survey of 27,056 US physician anesthesiologists was conducted to assess their knowledge, perceptions, and expectations regarding the use of AI in clinical practice. The primary outcome measured was attitude toward the use of AI in clinical practice, with scores of 4 or 5 on a 5-point Likert scale indicating positive attitudes. The anticipated impact of AI on various aspects of professional work was measured using a 3-point Likert scale. Logistic regression was used to explore the relationship between participant responses and attitudes toward the use of AI in clinical practice. RESULTS: A 2021 survey of 27,056 US physician anesthesiologists received 1086 responses (4% response rate). Most respondents were male (71%), active clinicians (93%) under 45 (34%). A majority of anesthesiologists (61%) had some knowledge of AI and 48% had a positive attitude toward using AI in clinical practice. While most respondents believed that AI can improve health care efficiency (79%), timeliness (75%), and effectiveness (69%), they are concerned that its integration in anesthesiology could lead to a decreased demand for anesthesiologists (45%) and decreased earnings (45%). Within a decade, respondents expected AI would outperform them in predicting adverse perioperative events (83%), formulating pain management plans (67%), and conducting airway exams (45%). The absence of algorithmic transparency (60%), an ambiguous environment regarding malpractice (47%), and the possibility of medical errors (47%) were cited as significant barriers to the use of AI in clinical practice. Respondents indicated that their motivation to use AI in clinical practice stemmed from its potential to enhance patient outcomes (81%), lower health care expenditures (54%), reduce bias (55%), and boost productivity (53%). Variables associated with positive attitudes toward AI use in clinical practice included male gender (odds ratio [OR], 1.7; P < .001), 20+ years of experience (OR, 1.8; P < .01), higher AI knowledge (OR, 2.3; P = .01), and greater AI openness (OR, 10.6; P < .01). Anxiety about future earnings was associated with negative attitudes toward AI use in clinical practice (OR, 0.54; P < .01). CONCLUSIONS: Understanding anesthesiologists’ perspectives on AI is essential for the effective integration of AI into anesthesiology, as AI has the potential to revolutionize the field.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can digital leadership transform AI anxiety and attitude in nurses?;Journal of Nursing Scholarship;2024-07-31

2. Artificial Intelligence: Perceptions and Attitudes;Anesthesia & Analgesia;2024-04-15

3. Künstliche Intelligenz in der Intensivmedizin;Medizinische Klinik - Intensivmedizin und Notfallmedizin;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3