Thermal Stability and Reproducibility Enhancement of Organic Solar Cells by Tris(hydroxyquinoline)gallium Dopant Forming a Dual Acceptor Active Layer

Author:

Muhammad Fahmi F.ORCID,Sulaiman KhaulahORCID

Abstract

Nowadays, the main barriers facing organic solar cells (OSCs) from being commercialized and widely applied are their weak thermal stability and reproducibility problems. To tackle these problems, researchers usually consider various strategies which include modification in the devices architectural design, utilizing low energy gap materials, functionalizing their active layers, and the use of various optimization procedures. In this research work, we are specifically focused on the utilization of a small molecular organometallic, tris(hydroxyquinoline)gallium (Gaq3), as a secondary acceptor dopant, aiming at improving thermal stability, and reproducibility of OSCs. All-solution processed technique with the help of spin coater was used to deposit the active layer of the devices. Results showed that the addition of 29% molar fraction of Gaq3 into the devices active layer has considerably improved the thermal stability, photo-absorption, and reproducibly of the solar cells thanks to the excellent thermal stability and electron mobility of Gaq3 molecules. Our devices based on DH6T: PCBM:Gaq3 performed highest stable performance at 180°C, implying higher thermal stability compared to that of the reported P3HT: PCBM:F8BT and PTB7:PCBM: F8BT based solar cells. In spite of improved reproducibility, the efficiency of the devices was increased by 5.8 times compared to that of the control ones.

Publisher

Koya University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3