Paradisiaca/Solanum Tuberosum Biowaste Composited with Graphene Oxide for Flexible Supercapacitor

Author:

Kandasamy Senthil Kumar,Arumugam Chandrasekaran,Sajitha A S,Rao Saggurthi Prabhakara,Selvaraj Sangavi,Vetrivel Ragavi,Selvarajan Roobak,Alosaimi Abeer Mohamed,Khan Anish,Hussein Mahmoud Ali,Asiri Abdullah M.

Abstract

This work focuses on the development of a novel type of chemically activated carbon networks composited with the graphene oxide. Here, the carbon networks were derived from green biomass wastes such as orange peels, banana peels and potato starch. All the obtained carbon materials were being activated using different activating agents based on the higher specific capacitance such as phosphoric acid activated orange peel derived carbon, sulphuric acid activated banana peel derived carbon and hydrochloric acid activated potato starch. Further they were individually composited with graphene oxide for enhanced performance. Different chemical activation is employed for the sake of obtaining higher specific capacitance, energy and power density. Phosphoric acid activation on orange peel derived carbon network was selected due to the improvement in the micropores and further increased the surface area with the controlling capability of structures of activated carbon. To improve the conductivity of the samples, graphene oxide was added. The electrochemical performance of orange peel, banana peel and potato starch derived nano porous activated carbon materials composited with graphene oxide for supercapacitor applications is evaluated using aqueous H2SO4 electrolytes at a scan rate of 10 mV s-1. The samples that are prepared are structurally characterized using fourier transform infrared spectroscopy, x-ray diffraction and electrochemically characterized using cyclic voltammetry, galvanostatic charge and discharge measurements, and electrochemical impedance spectroscopy. From the electrochemical measurements, suitability of material as electrode for supercapacitors can be understood. The superior electrochemical performance is attributed in orange peel derived nano porous carbon/ graphene oxide due to porous structure.

Publisher

Journal of New Materials for Electrochemical Systems

Subject

Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3