A MODEL AND TRAINING METHOD FOR CONTEXT CLASSIFICATION IN CCTV SEWER INSPECTION VIDEO FRAMES

Author:

Moskalenko V. V.,Zaretsky M. O.,Moskalenko A. S.,Panych A. O.,Lysyuk V. V.

Abstract

Context. A model and training method for observational context classification in CCTV sewer inspection vide frames was developed and researched. The object of research is the process of detection of temporal-spatial context during CCTV sewer inspections. The subjects of the research are machine learning model and training method for classification analysis of CCTV video sequences under the limited and imbalanced training dataset constraint. Objective. Stated research goal is to develop an efficient context classifier model and training algorithm for CCTV sewer inspection video frames under the constraint of the limited and imbalanced labeled training set. Methods. The four-stage training algorithm of the classifier is proposed. The first stage involves training with soft triplet loss and regularisation component which penalises the network’s binary output code rounding error. The next stage is needed to determine the binary code for each class according to the principles of error-correcting output codes with accounting for intra- and interclass relationship. The resulting reference vector for each class is then used as a sample label for the future training with Joint Binary Cross Entropy Loss. The last machine learning stage is related to decision rule parameter optimization according to the information criteria to determine the boundaries of deviation of binary representation of observations for each class from the corresponding reference vector. A 2D convolutional frame feature extractor combined with the temporal network for inter-frame dependency analysis is considered. Variants with 1D Dilated Regular Convolutional Network, 1D Dilated Causal Convolutional Network, LSTM Network, GRU Network are considered. Model efficiency comparison is made on the basis of micro averaged F1 score calculated on the test dataset. Results. Results obtained on the dataset provided by Ace Pipe Cleaning, Inc confirm the suitability of the model and method for practical use, the resulting accuracy equals 92%. Comparison of the training outcome with the proposed method against the conventional methods indicated a 4% advantage in micro averaged F1 score. Further analysis of the confusion matrix had shown that the most significant increase in accuracy in comparison with the conventional methods is achieved for complex classes which combine both camera orientation and the sewer pipe construction features. Conclusions. The scientific novelty of the work lies in the new models and methods of classification analysis of the temporalspatial context when automating CCTV sewer inspections under imbalanced and limited training dataset conditions. Training results obtained with the proposed method were compared with the results obtained with the conventional method. The proposed method showed 4% advantage in micro averaged F1 score. It had been empirically proven that the use of the regular convolutional temporal network architecture is the most efficient in utilizing inter-frame dependencies. Resulting accuracy is suitable for practical use, as the additional error correction can be made by using the odometer data.

Publisher

Zaporizhzhia National Technical University

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3