SYNTHESIS AND USAGE OF NEURAL NETWORK MODELS WITH PROBABILISTIC STRUCTURE CODING

Author:

Leoshchenko S. D.,Oliinyk A. O.,Subbotin S. A.,Gofman Ye. O.,Ilyashenko M. B.

Abstract

Context. The problem of encoding information of models based on artificial neural networks for further transmission and use of such models is considered. The object of research is the process of coding artificial neural networks using probabilistic data structures. Objective of this work is to develop a method for coding neural networks to reduce the resource intensity of the process of neuroevolutionary model synthesis. Method. A method for encoding neural networks based on probabilistic data structures is proposed. At the beginning, the method uses the basic principles of the approach of direct encoding of network information and, based on sequencing, encodes a matrix of interneuronal connections in the form of biopolymers. Then, probabilistic data structures are used to represent the original matrix more compactly. For this purpose, hash functions are used, the initial matrix goes through the hashing process, which significantly reduces the requirements for memory resources. The method allows to reduce memory costs when sending artificial neural networks, which significantly expands the practical use of such models, preventing a sharp decrease in the accuracy of their operation. Results. The developed method is implemented and investigated in solving the problem of classification of the state of South German creditors. The use of the developed method allowed increasing the rate of neuromodel synthesis by 15–17.6%, depending on the computing resources used. The method also reduced the share of information transfers by 8%, which also indicates faster and more efficient use of resources. Conclusions. The conducted experiments confirmed the efficiency of the proposed mathematical software and allow us to recommend it for use in practice, when encoding models based on artificial neural networks, for further solving problems of diagnostics, forecasting, evaluation and pattern recognition. Prospects for further research may consist in pre-processing data for more strict control of the encoding process in order to minimize the loss of quality of models based on neural networks.

Publisher

Zaporizhzhia National Technical University

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3