Effect of contrasting crop rotation systems on soil chemical, biochemical properties and plant root growth in organic farming: first results

Author:

Monaci Elga,Polverigiani Serena,Neri Davide,Bianchelli Michele,Santilocchi Rodolfo,Toderi Marco,D'Ottavio Paride,Vischetti Costantino

Abstract

Organic farming is claimed to improve soil fertility. Nonetheless, among organic practices, net C-inputs may largely vary in amount and composition and produce different soil conditions for microbial activity and plant-root system adaptation and development. In this study, we hypothesised that, in the regime of organic agriculture, soil chemical and biochemical properties can substantially differ under contrasting crop rotation systems and produce conditions of soil fertility to which the plant responds through diverse growth and production. The impact of 13 years of Alfalfa-Crop rotation (P-C) and Annual Crop rotation (A-C) was evaluated on the build up of soil organic carbon (SOC), active (light fraction organic matter, LFOM; water soluble organic carbon, WSOC) and humic fraction (fulvic acids carbon, FAC; humic acids carbon, HAC), soil biochemical properties (microbial biomass carbon, MBC; basal respiration, dBR; alkaline phosphatase AmP; arylsulfatase ArS; orto-diphenoloxidase, o-DPO) and the amount of available macro-nutrients (N, P, and S) at two different soil depths (0-10 cm and 10-30 cm) before and after cultivation of wheat. We also studied the response of root morphology, physiology and yield of the plant-root system of wheat. Results showed that the level of soil fertility and plant-root system behaviour substantially differed under the two crop rotation systems investigated here. We observed high efficiency of the P-C soil in the build up of soil organic carbon, as it was 2.9 times higher than that measured in the A-C soil. With the exception of o-DPO, P-C soil always showed a higher level of AmP and ArS activity and an initial lower amount of available P and S. The P-C soil showed higher rootability and promoted thinner roots and higher root density. In the P-C soil conditions, the photosynthesis and yield of durum wheat were also favoured. Finally, cultivation of wheat caused an overall depletion of the accrued fertility of soil, mainly evident in the P-C soil, which maintained a residual higher level of all the chemical and biochemical properties tested.

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3