3D modeling and volume measurement of bulk grains stored in large warehouses using bi-temporal multi-site terrestrial laser scanning data

Author:

Hu Xingbo,Xia Tian,Yang Leidong,Wu Fangming,Tian Yinghong

Abstract

Terrestrial laser scanning (TLS) is a promising technology for quantity checking huge grain stocks with low cost, light workload and high efficiency. Existing applications of TLS in bulk grain measurement and quantification lack the ability to capture complete structural information of grain bulks and thus will result in large errors. In this paper, we propose a bi-temporal TLS scheme for fast 3D modeling and accurate volume measurement of bulk grains stored in large warehouses. The scheme uses bi-temporal multi-site TLS datasets acquired under both empty and full or high loading conditions to obtain complete surface information about grain bulk’s structure. In order for a grain bulk’s all external surfaces and the 3D volumetric model reconstructed therefrom to be automatically derived from the bi-temporal TLS dataset, several dedicated methods are developed for the scheme. A fully automated marker-free strategy exploring structurally semantic information inherent in the large grain storehouses is adopted to register multi-scan TLS point cloud data captured in large-scale granary scenes. Also, a local minima-based region growing technique is devised to extract underlying surfaces from a granary scene point cloud model. Experiments show that the proposed 3D modeling and volume measurement scheme can work effectively and quickly in TLS-based granary field applications and repeated test data demonstrate its correctness, repeatability and accuracy. Compared with the conventional manual measurement approach, the bi-temporal TLS scheme can not only achieve much higher measurement precision, but also greatly improve efficiency by significantly reducing cost, workload, and manpower. It has good potential for use in the area of nation-wide grain inventory inspection in China.

Publisher

PAGEPress Publications

Reference25 articles.

1. Barreca, F., Modica, G., Di Fazio, S., Tirella, V., Tripodi, R. and Fichera, C. R., 2017. Improving building energy modelling by applying advanced 3D surveying techniques on agri-food facilities. Journal of Agricultural Engineering, 48(4), 203–208. https://doi: 10.4081/jae.2017.677.

2. Buckley, S.J., Howell, J.A., Enge, H.D., Kurz, T.H., 2008. Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society 165, 625-638.

3. Chen, W., Hu, X., Chen, W., Hong, Y., Yang, M., 2018. Airborne lidar remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques. Remote Sensing 10, 1078.

4. Chen, Y., Medioni, G., 1992. Object modelling by registration of multiple range images. Image and Vision Computing 10, 145-155.

5. Hu, X., Chen, W., Xu, W., 2017. Adaptive mean shift-based identication of individual trees using airborne lidar data. Remote Sensing 9, 148.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3