Larval fish sensitivity to a simulated cold-water pulse varies between species and age
-
Published:2022-07-22
Issue:
Volume:81
Page:
-
ISSN:1723-8633
-
Container-title:Journal of Limnology
-
language:
-
Short-container-title:J Limnol
Author:
Raymond ScottORCID, Ryall Jordi, Koehn JohnORCID, Fanson Ben, Hill Sarah, Stoessel DanielORCID, Tonkin ZebORCID, Sharley Joanne, Todd CharlesORCID, Campbell AshlenORCID, Lyon Jarod, Turner Mark, Ingram Brett
Abstract
The release of cold-water from hypolimnetic zones of impoundments sharply reduces downstream riverine water temperature. This cold-water pollution (CWP) can extend for hundreds of kilometres, severely challenging the physiological ability of aquatic fauna, particularly ectotherms such as fish, to maintain essential processes such as metabolism, development and growth and survival. The impact of CWP on native fish, especially early life stages, is poorly known. We investigated the effect of a 24-hour exposure to a range of environmentally-related water temperatures (8, 10, 12, 14, 16, 18 and 20°C) on three age-classes (<24-hour-old, 7-day and 14-day-old larvae) of two Australian native fish species: Murray cod (Maccullochella peelii) and Macquarie perch (Macquaria australasica). Overall, larvae of M. peelii were more sensitive to lower water temperatures and hence CWP than M. australasica, indicated by higher rates of equilibrium loss. Larvae of M. peelii were most sensitive to exposure at seven days old whereas M. australasica larvae were most sensitive at <24-h-old. Using our results, we modelled pre- and post-impoundment temperature scenarios and estimated the downstream CWP footprint for both species in an Australian river reach. Larvae of M. peelii were predicted to be absent from the first 26 km of river downstream of the impoundment compared with no impact on the distribution of M. australasica. Managing riverine water temperature below impoundments is fundamental to promoting positive outcomes for endemic fish on not only a local, but global basis. This study emphasises the differential impact of CWP among the critical early life stages and fish species and highlights the urgent need to better manage hypolimnetic water releases to improve downstream river ecosystems.
Publisher
PAGEPress Publications
Subject
Water Science and Technology,Ecology,Aquatic Science
Reference119 articles.
1. Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J. V, Heibel, T. J., Wikramanayake, E., Olson, D., López, H. L., Reis, R. E., Lundberg, J. G., Sabaj Pérez, M. H., Petry, P., Pérez, M. H. S., and Petry, P. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience 58;403. 2. Agostinho, A., Pelicice, F., and Gomes, L. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132. 3. Almodóvar, A., Nicola, G. G., Ayllón, D., and Elvira, B. (2012). Global warming threatens the persistence of Mediterranean brown trout. Global Change Biol 18:1549–1560. 4. Anweiler, K. V., Arnott, S. A., and Denson, M. R. (2014). Low-temperature tolerance of juvenile Spotted Seatrout in South Carolina. Trans Am Fishes Soc 143:999–1010. 5. Arthington, A. H., and Pusey, B. J. (2003). Flow restoration and protection in Australian rivers. River Res Appl 19:377–395.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|