Effect of temperature on behavior, glycogen content, and mortality in Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae)

Author:

Andrade Jennifer T.M.,Cordeiro Nelmara I.S.,Montresor Lângia C.,Luz Dalva M.R.,Luz Renata C.R.,Martinez Carlos B.,Pinheiro Jairo,Paglia Adriano P.,Vidigal Teofânia H.D.A.

Abstract

Limnoperna fortunei (Dunker 1857) is a freshwater mussel with physiological tolerance to different environmental conditions, which may explain its success as an invasive species. The role of abiotic factors in its establishment, abundance and projections of risk of further spread into several areas has been studied. These mussels may respond to multiple environmental stressors, such as temperature, through physiological mechanisms, behavioral responses, mortality or some combination of these. The aim of this study was to investigate the behavioral responses (valve closing), glycogen concentrations and mortality of L. fortunei under four different temperatures (5°C, 10°C, 20°C and 30°C) during a chronic test (30 days). Two-way analysis of variance (ANOVA) was used to compare glycogen concentrations across days of the experiment and at the different temperatures. Differences in valve-closing behavior and mortality among temperatures were tested using repeated-measures ANOVA. We observed that most of the mussels maintained at 5°C closed their valves (74.7±15.3%), indicating that they remain inactive at low temperatures. The glycogen levels significantly differed among the temperatures tested. These differences occurred mainly due to the high glycogen values observed in mussels exposed to 10°C. Stability in glycogen concentrations was observed within each particular temperature. The cumulative mortality was higher at extreme temperatures (5°C and 30°C). The ideal temperature for laboratory maintenance and tests is approximately 20°C. Our data also show that L. fortunei can survive and maintain their energy reserves (glycogen) for several days at 5°C, an important feature related to its invasion success.

Publisher

PAGEPress Publications

Subject

Water Science and Technology,Ecology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3