Stress distribution pattern in all-on-four maxillary restorations supported by porous tantalum and solid titanium implants using three-dimensional finite element analysis

Author:

Masoomi Faeze,Mahboub Farhang

Abstract

Success/failure of dental implants depends on stress transfer and distribution at the bone-implant interface. This study aimed to assess the stress distribution pattern in all-on-four maxillary restorations supported by porous tantalum and solid titanium implants using three-dimensional (3D) finite element analysis (FEA). In this FEA, a geometric model of an edentulous maxilla, Zimmer screw-vent tantalum and solid titanium implants were modelled. Four models with the all-on-four concept were designed. The fifth model had 6 vertical implants (all-on-six). Two different implant types (porous tantalum and solid titanium) were modelled to yield a total of 10 models, and subjected to 200 N bilateral vertical load. Pattern of stress distribution and maximum von Mises stress values in cancellous and cortical bones around implants were analysed. In tantalum models, the effect of increasing the distal tilting of posterior implants was comparable to the effect of increasing the number of implants to 6 on von Mises stress values in cortical bone. However, in cancellous bone, the effect of increasing the tilting of posterior implants on stress was slightly greater than the effect of increasing the number of implants to 6. In solid titanium models, the effect of both of the abovementioned parameters was comparable on stress in cancellous bone; but in cortical bone, the effect of increasing the implant number was slightly greater on stress reduction. Despite similar pattern of stress distribution in bone around implants, higher maximum von Mises stress values around tantalum implants indicate higher stress transfer capacity of this type of implant to the adjacent bone, compared with solid titanium implants.

Publisher

PAGEPress Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3