Affiliation:
1. Dpto. Ecuaciones Diferenciales y Análisis Numérico , Universidad de Sevilla , Apdo. de Correos 1160, 41080 - Sevilla , Spain
Abstract
Abstract
In this paper we provide a method to prove the existence of weak solutions for a type of non-autonomous nonlocal reaction-diffusion equations. Due to the presence of the nonlocal operator in the diffusion term, we cannot apply the Monotonicity Method directly. To use it, we build an auxiliary problem with linear diffusion and later, through iterations and compactness arguments, we show the existence of solutions for the nonlocal problem.
Subject
Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science
Reference23 articles.
1. A. Andami Ovono, (2010), Asymptotic behaviour for a diffusion equation governed by nonlocal interactions, Electron. J. Differential Equations, 134, 01–16. http://ejde.math.txstate.edu/Volumes/2010/134/abstr.html
2. M. Anguiano, T. Caraballo and J. Real, (2010), Existence of pullback attractor for reaction-diffusion equation in some unbounded domain with non-autonomous forcing term in H−1, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20, 2645– 2656. 10.1142/S021812741002726X
3. T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, (2015), Long-time behaviour of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121, 3–18. 10.1016/j.na.2014.07.011
4. T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, (2016), Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dyn., 81, 35–50. 10.1007/s11071-015-2200-4
5. T. Caraballo, M. Herrera-Cobos and P. Marín-Rubio, (To appear), Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution, Discrete Contin. Dyn. Syst. Ser. B.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献