Separation of ethylene glycol and alkali metal salts on carbon nanotubes and mosaic membranes

Author:

Belyakova N. V.,Butyrskaya E. V.,Selemenev V. F.,Shaposhnik V. A.

Abstract

A method for separation of ethylene glycol (EG) and alkali metal salts in aqueous solutions is developed using solid-phase extraction on carbon nanotubes (CNT) and dialysis with a domestic mosaic membrane AK-45. Both methods enable effective separation of the components of EG + NaCl (KCl) aqueous solution which is necessary for gas chromatographic determination of EG in the mixtures. Hydrophobic-hydrophilic interactions in the EG – water – CNT system provide efficient sorption of EG and almost zero sorption of potassium chloride by CNT. Coefficients of EG and KCl separation on Dealtom carbon nanotubes range within 7 – 15 (for 0.001 ≤C0 EG≤ 0.1, 0.001 ≤C0 KCl≤ 0.1 mol/liter), EG extraction rate is 86 – 94% for single extraction. CNT practically do not absorb potassium chloride. High and low permeability of mosaic membranes for metal salts EG, respectively, is a basis for separation of EG and alkali metal salts by dialysis. During a 4-hour dialysis, 96% and 87% of NaCl (C0= 0.001 mol/dm3andC0= 0.01 mol/dm3, respectively), are transferred as NaCl through the AK-45 membrane (86% and 82% for KCl). At the same time an amount of less than 3% EG (C0= 0 mol/dm3) is transferred during dialysis through AK-45 membrane. Mosaic membrane AK-45 appeared to be the most effective one regarding the transfer of alkali metal salts from low-mineralized aqueous solutions, unlike traditional ion-exchange membranes in the absebce of such transfer due to the Donnan phenomenon. Coefficients of alkali metal chloride and EG separation by dialysis with an AK-45 membrane range within 13 – 38, which indicates to their rather efficient separation.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3