Affiliation:
1. Dmitry Mendeleev University of Chemical Technology of Russia
2. Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences
3. JSC SDO CHROMATEC
Abstract
Operation with positive ions formed from the impact of high energy electrons (usually 70 eV, which exceeds the ionization energy of the molecules) is a standard mode for mass spectrometric detectors of most gas chromatography-mass spectrometric complexes (GC/MS) in the basic configuration. At the same time, we have shown that the option of setting the energy of ionizing electrons (maintained in the design of some serial devices) within the pre-ionization region also allows one to obtain mass spectra of negative ions (NI) which, in turn, significantly expands the analytical potential of standard equipment. The formation of NI occurs in the low-energy range of 0 – 15 eV due to resonant capture of electrons by molecules (REC). In contrast to positive ions, the intensity of NI formation sharply (resonantly) depends on the electron energy and this dependence is characteristic of each chemical compound. Both the relative intensity of the mass-peaks and, in general, the ionic composition of the formed mass spectrum of NI significantly depend on the electron energy. The problem of choosing the optimal energy of ionizing electrons providing the same efficiency of mass-spectrometric determination of all components of complex mixtures of dissimilar compounds is also associated with the features of negative ion formation during chromatography-mass spectrometric analysis. To address the problem, we propose a technique providing generation of complete (in NI composition and intensities) mass spectra of NI through repeated variation of the energy of ionizing electrons in a given range of 0 – 10 eV. Technical implementation of the technique [1] was carried out at the Design Bureau «Chromatec «(Yoshkar Ola, Russia) in the form of a special electronic device, which was tested in pilot operation as part of the gas chromatograph complex with a quadrupole mass spectrometer «Chromatec». We describe the principle of operation of the device and present the results of tests.
Reference17 articles.
1. RF patent N 188483. Device for supplying the cathode of a mass spectrometer with an alternating current for periodic variation of the energy of emitted electrons when registering the mass spectra of negative ions / Terentyev A. G., Brusenin A. A., Khatymov R. V., Tuktarov R. F. Publ. April 16, 2019 [in Russian].
2. Terentyev A. G., Morozik Yu. I., Rybal’chenko I. V., et. al. Determination of the structural features of O-Alkyl-S-2-(N,N-Dialkylamino) ethyl alkylthiophosphonates from their electron ionization mass spectra / J. Anal. Chem. 2016. Vol. 71. N 13. P. 1266 – 1274. DOI: 10.1134/S1061934816130104.
3. Khatymov R. V., Ivanova M. V., Terentyev A. G., Rybal’chenko I. V. Discrimination of stereoisomers of 2-chlorovinyldichloroarsine and bis(2-chlorovinyl)chloroarsine from the data of negative ion mass spectrometry and quantum-chemical simulation / Rus. J. Gen. Chem. 2015. Vol. 85. N 11. P. 2596 – 2604. DOI: 10.1134/S1070363215110158.
4. Terentyev A. G., Morozik Yu. I., Ivanova M. V., Dudkin A. V. Identification and Determination of the Molecular Structure of Phosphate Esters by the Joint Application of Positive Ion and Negative Ion Electron Ionization Mass Spectrometry / J. Anal. Chem. 2020. Vol. 75. N 2. P. 208 – 218. DOI: 10.31857/S0044450220020176.
5. Mazunov V. A., Schukin P. V., Khatymov R. V., Muftakhov M. V. Negative ion mass spectrometry in the resonant electron capture mode (tutorial review) / Mass-spektrometriya. 2006. Vol. 3. N 1. P. 11 – 32 [in Russian].
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献