Affiliation:
1. Indian Institute of Information Technology, Allahabad, UP, India
Abstract
With the increasing role of computing devices, facilitating natural human computer interaction (HCI) will have a positive impact on their usage and acceptance as a whole. For long time, research on HCI has been restricted to techniques based on the use of keyboard, mouse, etc. Recently, this paradigm has changed. Techniques such as vision, sound, speech recognition allow for much richer form of interaction between the user and machine. The emphasis is to provide a natural form of interface for interaction. Gestures are one of the natural forms of interaction between humans. As gesture commands are found to be natural for humans, the development of gesture control systems for controlling devices have become a popular research topic in recent years. Researchers have proposed different gesture recognition systems which act as an interface for controlling the applications. One of the drawbacks of present gesture recognition systems is application dependence which makes it difficult to transfer one gesture control interface into different applications. This paper focuses on designing a vision-based hand gesture recognition system which is adaptive to different applications thus making the gesture recognition systems to be application adaptive. The designed system comprises different processing steps like detection, segmentation, tracking, recognition, etc. For making the system as application-adaptive, different quantitative and qualitative parameters have been taken into consideration. The quantitative parameters include gesture recognition rate, features extracted and root mean square error of the system while the qualitative parameters include intuitiveness, accuracy, stress/comfort, computational efficiency, user's tolerance, and real-time performance related to the proposed system. These parameters have a vital impact on the performance of the proposed application adaptive hand gesture recognition system.
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献