INDEPENDENT COMPONENT ANALYSIS FOR CLASSIFYING MULTISPECTRAL IMAGES WITH DIMENSIONALITY LIMITATION

Author:

DU QIAN1,KOPRIVA IVICA2,SZU HAROLD2

Affiliation:

1. Department of Electrical and Computer Engineering, Mississippi State University, MS 39762, USA

2. Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA

Abstract

Airborne and spaceborne remote sensors can acquire invaluable information about earth surface, which have many important applications. The acquired information usually is represented as two-dimensional grids, i.e. images. One of techniques to processing such images is Independent Component Analysis (ICA), which is particularly useful for classifying objects with unknown spectral signatures in an unknown image scene, i.e. unsupervised classification. Since the weight matrix in ICA is a square matrix for the purpose of mathematical tractability, the number of objects that can be classified is equal to the data dimensionality, i.e. the number of spectral bands. When the number of sensors (or spectral channels) is very small (e.g. a 3-band CIR photograph and 6-band Landsat image with the thermal band being removed), it is impossible to classify all the different objects present in an image scene using the original data. In order to solve this problem, we present a data dimensionality expansion technique to generate artificial bands. Its basic idea is to use nonlinear functions to capture and highlight the similarity/dissimilarity between original spectral measurements, which can provide more data with additional information for detecting and classifying more objects. The results from such a nonlinear band generation approach are compared with a linear band generation method using cubic spline interpolation of pixel spectral signatures. The experiments demonstrate that nonlinear band generation approach can significantly improve unsupervised classification accuracy, while linear band generation method cannot since no new information can be provided. It is also demonstrated that ICA is more powerful than other frequently used unsupervised classification algorithms such as ISODATA.

Publisher

World Scientific Pub Co Pte Lt

Reference31 articles.

1. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site

2. J. B. Adams, M. O. Smith and A. R. Gillespie, Remote Geochemical Analysis: Elemental and Mineralogical Composition, Image spectroscopy: Interpretation based on spectral mixture analysis, eds. C. M. Pieters and P. A. Englert (Cambridge University Press, 1993) pp. 145–166.

3. An Information-Maximization Approach to Blind Separation and Blind Deconvolution

4. Equivariant adaptive source separation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3