Max-projective modules

Author:

Alagöz Yusuf1,Büyükaşık Engi̇n1

Affiliation:

1. Izmir Institute of Technology, Department of Mathematics, Urla 35430, İzmir, Turkey

Abstract

Weakening the notion of [Formula: see text]-projectivity, a right [Formula: see text]-module [Formula: see text] is called max-projective provided that each homomorphism [Formula: see text], where [Formula: see text] is any maximal right ideal, factors through the canonical projection [Formula: see text]. We study and investigate properties of max-projective modules. Several classes of rings whose injective modules are [Formula: see text]-projective (respectively, max-projective) are characterized. For a commutative Noetherian ring [Formula: see text], we prove that injective modules are [Formula: see text]-projective if and only if [Formula: see text], where [Formula: see text] is [Formula: see text] and [Formula: see text] is a small ring. If [Formula: see text] is right hereditary and right Noetherian then, injective right modules are max-projective if and only if [Formula: see text], where [Formula: see text] is a semisimple Artinian and [Formula: see text] is a right small ring. If [Formula: see text] is right hereditary then, injective right modules are max-projective if and only if each injective simple right module is projective. Over a right perfect ring max-projective modules are projective. We discuss the existence of non-perfect rings whose max-projective right modules are projective.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual Kasch rings;Journal of Algebra and Its Applications;2023-07-10

2. On the Two Categories of Modules;Symmetry;2022-07-13

3. On minimal absolutely pure domain of RD-flat modules;Turkish Journal of Mathematics;2022-01-01

4. Some variations of projectivity;Journal of Algebra and Its Applications;2021-09-04

5. Subprojectivity in Abelian Categories;Applied Categorical Structures;2021-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3