Affiliation:
1. Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-8001, USA
Abstract
All algebras considered in this paper are commutative with 1. Let baℓ be the category of bounded Archimedean ℓ-algebras. We investigate Dedekind completions and Dedekind complete algebras in baℓ. We give several characterizations for A ∈ baℓ to be Dedekind complete. Also, given A, B ∈ baℓ, we give several characterizations for B to be the Dedekind completion of A. We prove that unlike general Gelfand-Neumark-Stone duality, the duality for Dedekind complete algebras does not require any form of the Stone–Weierstrass Theorem. We show that taking the Dedekind completion is not functorial, but that it is functorial if we restrict our attention to those A ∈ baℓ that are Baer rings. As a consequence of our results, we give a new characterization of when A ∈ baℓ is a C*-algebra. We also show that A is a C*-algebra if and only if A is the inverse limit of an inverse family of clean C*-algebras. We conclude the paper by discussing how to derive Gleason's theorem about projective compact Hausdorff spaces and projective covers of compact Hausdorff spaces from our results.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献