Affiliation:
1. Department of Mathematics, Computer and Information Science, SUNY College at Old Westbury, 223 Store Hill Road, Old Westbury, NY 11568, USA
Abstract
For a commutative integral domain [Formula: see text] with field of fractions [Formula: see text], the ring of integer-valued polynomials on [Formula: see text] is [Formula: see text]. In this paper, we extend this construction to skew polynomial rings. Given an automorphism [Formula: see text] of [Formula: see text], the skew polynomial ring [Formula: see text] consists of polynomials with coefficients from [Formula: see text], and with multiplication given by [Formula: see text] for all [Formula: see text]. We define [Formula: see text], which is the set of integer-valued skew polynomials on [Formula: see text]. When [Formula: see text] is not the identity, [Formula: see text] is noncommutative and evaluation behaves differently than it does for ordinary polynomials. Nevertheless, we are able to prove that [Formula: see text] has a ring structure in many cases. We show how to produce elements of [Formula: see text] and investigate its properties regarding localization and Noetherian conditions. Particular attention is paid to the case where [Formula: see text] is a discrete valuation ring with finite residue field.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A note on integer-valued skew polynomials;Journal of Algebra and Its Applications;2022-05-12