Applications of resolving subcategories to singularity categories and monomorphism categories

Author:

Gao Nan12,Song Keyan3,You Hanyang4ORCID,Zhou Guodong5ORCID

Affiliation:

1. Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China

2. Newtouch Center for Mathematics, Shanghai University, Shanghai 200444, P. R. China

3. School of Mathematics and Statistics, Southwest University, Chonqging 400715, P. R. China

4. Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China

5. School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering, Applications (Ministry of Education), Shanghai, Key Laboratory of PMMP, East China Normal University, Shanghai 200241, P. R. China

Abstract

In this paper, we study resolving subcategories and singularity categories. First, if the left perpendicular category of a module [Formula: see text] over an Artin algebra [Formula: see text] is the additive closure of another module [Formula: see text], then the singularity category of [Formula: see text] and that of the endomorphism algebra [Formula: see text] of [Formula: see text] are closed related. This gives a categorical version of a recent result of Zhang ([31], Theorem 2]). Second, we apply the resolution theorem for derived categories to elliptic curves, the monomorphism subcategory of a Gorenstein algebra and of a kind of Eilenberg–Moore category. As consequences, their singularity categories are equivalent, which explains why monomorphism categories are closely related to singularity categories.

Funder

Key Laboratory of Mathematics and Engineering Applications

national natural science foundation of china

natural science foundation of chongqing

fundamental research funds for the central universities

Zhejiang Provincial Outstanding Youth Science Foundation

Shanghai Key Laboratory of PMMP

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3