Rings all of whose finitely generated ideals are automorphism-invariant

Author:

Quynh Truong Cong1,Abyzov Adel Nailevich2,Trang Dao Thi34

Affiliation:

1. Department of Mathematics, The University of Danang – University of Science, and Education, 459 Ton Duc Thang, Danang City, Vietnam

2. Department of Algebra and Mathematical Logic, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Str., Kazan 420008, Russia

3. Department of Mathematics, College of Education, Hue University, 34 Le Loi, Hue City, Vietnam

4. Faculty of Applied Sciences, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam

Abstract

Rings in which each finitely generated right ideal is automorphism-invariant (right[Formula: see text]-rings) are shown to be isomorphic to a formal matrix ring. Among other results it is also shown that (i) if [Formula: see text] is a right nonsingular ring and [Formula: see text] is an integer, then [Formula: see text] is a right self injective regular ring if and only if the matrix ring [Formula: see text] is a right [Formula: see text]-ring, if and only if [Formula: see text] is a right automorphism-invariant ring and (ii) a right nonsingular ring [Formula: see text] is a right [Formula: see text]-ring if and only if [Formula: see text] is a direct sum of a square-full von Neumann regular right self-injective ring and a strongly regular ring containing all invertible elements of its right maximal ring of fractions. In particular, we show that a right semiartinian (or left semiartinian) ring [Formula: see text] is a right nonsingular right [Formula: see text]-ring if and only if [Formula: see text] is a left nonsingular left [Formula: see text]-ring.

Funder

Volga Region Scientific-Educational Centre of Mathematics

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3