THE PHENOMENOLOGY OF HIGH EXPLOSIVE FIREBALLS FROM FIELDED SPECTROSCOPIC AND IMAGING SENSORS FOR EVENT CLASSIFICATION

Author:

GROSS KEVIN C.1,PERRAM GLEN P.2

Affiliation:

1. Riverside Research Institute, 2681 Commons Blvd, Beavercreek, Ohio 45431, USA

2. Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433-7765, USA

Abstract

Conventional munitions emit intense radiation upon detonation which spans much of the electromagnetic spectrum. The phenomenology of time-resolved visible, near- and mid-IR spectra from these fast transient events is poorly understood. The observed spectrum is driven by many factors including the type, size and age of the chemical explosive, method of detonation, interaction with the environment, and the casing used to enclose the explosive. Midwave infrared emissions (1800–6000 cm -1, 1.67–5.56 μm) from a variety of conventional military munitions were collected with a Fourier transform spectrometer (16 cm-1, 21 Hz) to assess the possibility of event classification via remotely sensed spectra. Conventional munitions fireballs appear to be graybodies in the midwave. Modeling the spectra as a single-temperature Planckian (appropriately modified by atmospheric transmittance) provided key features for classification and substantially reduced the dimensionality of the data. The temperature cools from ~1800 K to ambient conditions in 3–5 s, often following an exponential decay with a rate near 1 s-1 second. A systematic, large residual spanning 2050–2250 cm -1 was consistently observed shortly after detonation and may be attributable to hot CO 2 emission at the periphery of the fireball. For two different explosive types detonated under similar conditions, features based on the temperature, area and fit residuals could be used to distinguish between them. This paper will present the phenomenology of detonation fireballs and explore the utility of physics-based features for explosive classification.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3