IMPROVEMENT OF SURFACE POTENTIAL ENERGY OF INDIUM TIN OXIDE THIN FILM MODIFIED WITH ORGANIC SEMICONDUCTOR MATERIAL BASED ON PHENYL GROUP

Author:

HAVARE ALI KEMAL12

Affiliation:

1. Photoelectronics Laboratory (PEL), Toros University, Mersin 33140, Turkey

2. Microphysics Laboratory, Department of Physics, University of Illinois at Chicago, USA

Abstract

This study focuses on surface characterization of modified indium tin oxide (ITO) for potential applications as anode in organic electronics devices. [4-iodophenyl]-silanetriol molecules were coated by self-assembled monolayers method on ITO surface. Kelvin Probe Microscopy, Scanning Tunneling Microcopy and X-ray Photoelectron Spectroscopy techniques were used to analyze the modified ITO surface. The results show that organic semiconductor material based on Phenyl group enhance surface morphology and increase the surface potential energy of ITO around [Formula: see text][Formula: see text]meV and contribute the tunneling current that inject from Fermi energy level of the ITO. This study includes the influence of surface interactions on electrochemical and spectral features of compounds. The results are important in developing surface structures in amorphous layers, better understanding the mechanism of creation of such structures on ITO surface.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3