ELECTROCHEMICAL, DFT AND MULTISCALE SIMULATION STUDIES ON SELF-ASSEMBLED FILMS OF 2-AMINO-4-METHYL-PYRIDINE INHIBITOR FOR COPPER METAL CORROSION PROTECTION IN 3.5% NaCl MEDIUM

Author:

BALAJI J.12ORCID,GHOREISHIAMIRI S.3,RAJA P. BOTHI2,OH T. H.1,SETHURAMAN M. G.4

Affiliation:

1. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

2. School of Chemical Science, Universiti Sains Malaysia, USM, Gelugor, Pulau Pinang, Penang, Malaysia

3. Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

4. Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu 624302, India

Abstract

Copper metal and its alloys are the most used in the industries because it holds excellent conductivity and natural corrosion protectiveness against air/moisture. However, copper undergoes degradation in presence of aggressive 3.5% NaCl. Protective coating is one of the practical methods to safeguard copper metal. In this study, 2-amino-4-methyl-pyridine (AMP) was coated as self-assembled monolayer method (SAM) with different immersion periods (12 h/24 h) and investigated the corrosion potential against 3.5% NaCl medium. Chemical composition of AMP/SAM/Cu was characterized using Fourier-transform infrared (FT-IR) spectroscopy and morphological analysis using atomic force microscopy (AFM) techniques. AMP’s corrosion inhibition potential were evaluated via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDS) analyses. Quantum chemical calculations and molecular dynamics (MD) simulations explained the stronger adsorption of AMP over copper metal surface via self-assembly method. The corrosion analysis revealed that AMP’s SAM formation (24 h immersion) enhances the corrosion protection of Cu metal, which is mainly due to the uniform thin adhesive compact layer formation and blocks incoming corrosive chloride ions. EIS investigation evident that AMP forms an adhesive layer over the copper surface and prevents the diffusion of aggressive corrosive medium, while PP studies revealed that AMP acts via the mixed mode of corrosion inhibition mechanism. AMP’s significant inhibition efficiency 90% was confirmed via PP analysis. AFM analysis enabled the morphology image of AMP’s shielding over Cu surface and the molecular modeling investigation supported well for the Cu–N (from AMP) bond formation.

Funder

national research foundation of korea

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3