SPIN-RESOLVED PHOTOELECTRON SPECTROSCOPY OF ULTRATHIN Fe FILMS ON GaAs(001)

Author:

TAKAHASHI N.1,ZHANG T.2,SPANGENBERG M.2,GREIG D.2,SHEN T.-H.3,CORNELIUS S.4,SEDDON E. A.4,MATTHEW J. A. D.5

Affiliation:

1. Department of Physics, Kagawa University, 1-1 Saiwaichyo, Takamatsu 760-8522, Japan

2. Department of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

3. Joule Physics Laboratory, Institute for Materials Research, University of Salford, Greater Manchester M5 4WT, UK

4. CLRC Daresbury Laboratory, Warrington WA4 4AD, UK

5. Department of Physics, University of York, Heslington, York YO1 5DD, UK

Abstract

Thin epitaxial Fe films were grown on singular and vicinal GaAs(001) substrates, and their magnetic and electronic structures were investigated by synchrotron-based spin-resolved and spin-integrated photoelectron spectroscopy with different Fe thickness. There were two types of substrates: one was a Si-doped n-type GaAs(001) surface with doping concentration of 2 × 1018 cm -3 (singular substrate), and the other was orientated by 3° toward the (111)A direction (vicinal substrate). Spin polarization of the secondary electron peak at different growth stages of Fe coverage for the singular substrate sample and the vicinal one were measured. In the case of singular substrates, there was a dependence of their initial surface reconstruction, which is associated with complex domain structure, while no such the dependence was observed in the case of vicinal substrates. The result from the vicinal sample suggests the geometrical influence of the initial surface stoichiometry of the substrate.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3