DRY SLIDING WEAR AND CORROSION BEHAVIOR OF AA7075–SiC COMPOSITES

Author:

SURENDARNATH S.1ORCID,RAMESH G.2ORCID,RAMACHANDRAN T.3ORCID

Affiliation:

1. Department of Mechanical Engineering, DVR & Dr. HS MIC College of Technology, Vijayawada 521180, Andhra Pradesh, India

2. Department of Metallurgical and Materials Engineering, Rajiv Gandhi University of Knowledge Technology, RK Valley, Kadapa 516330, Andhra Pradesh, India

3. Department of Mechanical Engineering, Jain University, Bangalore 560069, Karnataka, India

Abstract

Automobile structural components are subject to high stress, friction and corrosive environmental conditions. Though aluminum alloys exhibit lightweight and high corrosion resistance, there is a need to improve the high strength-to-weight ratio and resistance to friction. This paper presents microstructural analysis, hardness, dry sliding wear behavior, and corrosion behavior of AA7075 reinforced with silicon carbide (SiC) particles. The composite specimens were prepared at the concentration of 2.5 and 5[Formula: see text]wt.% SiC. The microstructure of AA7075 showed dendritic morphology while composite specimens showed nondendritic morphology grains. Reinforcement of SiC resulted in increased nucleation site and refinement of grain during solidification. XRD analysis of base alloy showed [Formula: see text] matrix with [Formula: see text] (MgZn2), T(Al–Zn–Mg–Cu) and Al7Cu2Fe phases, while the composite sample showed the presence of additional S(Al2CuMg) and [Formula: see text] (Al2Cu) phases. Composite samples showed higher hardness values than base alloy due to grain boundary strengthening and Orowan strengthening. The enhancement of hardness of AA7075 by 20% and 37.5% were obtained with the addition of 2.5 and 5[Formula: see text]wt.% SiC particles respectively and also predicted with less coefficient of friction and less wear rate at all the tested load conditions. At the same time, the respective reduction in wear rates of AA7075 was found to be 50 and 65%. The worn-out surface of the base alloy was found to have undergone extensive plastic deformation and resulted in delamination with extensive patches and no clear groove marks. The composite sample of 2.5[Formula: see text]wt.% SiC showed mild patches with clear groove marks, while the Composite of 5[Formula: see text]wt.% SiC showed groove marks with fine width parallel to sliding directions. The wear mechanism was found to be transferred from adhesive mode to abrasive mode through a mixed mechanical layer with an added concentration of SiC particles from 0[Formula: see text]wt.% to 5[Formula: see text]wt.%. Weight loss during immersion corrosion increases with an increase in the amount of SiC due to an increased amount of metallic phase which increases microgalvanic corrosion and pitting. Hence, composite samples showed decreased corrosion resistance than base alloy.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3