COMPARISON OF THE Ti/n-GaAs SCHOTTKY CONTACTS’ PARAMETERS FABRICATED USING DC MAGNETRON SPUTTERING AND THERMAL EVAPORATION

Author:

KAHVECI OSMAN1,AKKAYA ABDULLAH2,AYYILDIZ ENISE3,TÜRÜT ABDÜLMECIT3

Affiliation:

1. Faculty of Sciences, Department of Physics, Erciyes University, 38039 Kayseri, Turkey

2. Department of Technical Prog., Mucur Technical Vocational Schools, Ahi Evran University, 40500 Mucur/Kirşehir, Turkey

3. Faculty of Sciences, Department of Engineering Physics, Istanbul Medeniyet University, 34720 Istanbul, Turkey

Abstract

We have fabricated the Ti/[Formula: see text]-type GaAs Schottky diodes (SDs) by the DC magnetron deposition and thermal evaporation, cut from the same GaAs substrates, and we have made a comparative study of the current–voltage ([Formula: see text]–[Formula: see text]) measurements of both SDs in the measurement temperature range of 160–300[Formula: see text]K with steps of 10[Formula: see text]K. The barrier height (BH) values of about 0.82 and 0.76[Formula: see text]eV at 300[Formula: see text]K have been obtained for the sputtered and evaporated SDs, respectively. It has been seen that the apparent BH value for the diodes has decreased with decreasing temperature obeying the single-Gaussian distribution (GD) for the evaporated diode and the double-GD for the sputtered diode over the whole measurement temperature range. The increment in BH and observed discrepancies in the sputtered diode have been attributed to the reduction in the native oxide layer present on the substrate surface by the high energy of the sputtered atoms and to sputtering-induced defects present in the near-surface region. We conclude that the thermal evaporation technique yields better quality Schottky contacts for use in electronic devices compared to the DC magnetron deposition technique.

Funder

Erciyes Ãniversitesi

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3