SELF-ASSEMBLY ON DUAL WETTABLE SURFACE

Author:

AHMAD IMTIAZ1ORCID,JAN RAHIM2,KHAN HIDAYAT ULLAH1,HUSSAIN AKHLAQ1,TABASSUM AQSA1,LATIF AQSA1,ALI AMBREEN1

Affiliation:

1. Department of Physics, University of Peshawar, Peshawar 25120, Pakistan

2. School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

Abstract

A droplet of nanoparticle suspension is deposited on a specially designed dual wettable surface. Half diagonal of SiO2 substrate was oil coated and other half stayed unchanged. The droplet forms contact angle of 35 on the unchanged dry portion whereas it reaches to 60 on the oil coated region. Nanoparticle dried in stick–slip fashion where such effect was more pronounced on the oil-wet region. Scanning electron microscope (SEM) images revealed large ribbon-like nanorod assembly on the dry-region and short monolayer ribbons on the oil-wet part of the substrate. On both surfaces, shape-separation effect produced rod-rich and sphere-rich regions. The assemblies formed over the dry portion were dense whereas significantly small number of nanoparticles were observed on the oil-wet region. The droplet contact-line remained partially dynamic owing to the dual wettable design of the surface. Such contact-line dynamics facilitated the shape-separation effect induced by the surfactant molecules and dictated the deposition process over the surface. This work will be helpful to study shape-separation effect of small biological entities and multisystem of nanoparticles.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3