Realizing laminar-like flow in charged bunches with density evolution equations

Author:

Zerbe B. S.1ORCID,Duxbury P. M.1

Affiliation:

1. Department of Physics and Astronomy, Michigan State University, 48824 East Lansing, MI, USA

Abstract

In the ultra-fast electron microscopy community, electron bunches with much smaller longitudinal widths than transverse widths are emitted from the cathode surface. The community has believed that these bunches evolve to a uniform ellipsoid, but recent simulations by our group and others suggest that if the bunch has an initially transverse Gaussian profile, a ring-like density “shock” emerges at the median of the bunch during evolution. To explain these results, we generalized Reed’s 1D fluid model of charged bunch expansion to cylindrical and spherical geometries demonstrating such a shock emerges analytically under these symmetric geometries. Mathematically, the shock in these models occurs when particles more toward the middle “catch-up” to outer particles, and eventually the trajectory of the more central particle crosses-over the outer particle’s trajectory. This cross-over marks the transition from the laminar to nonlaminar regime. However, this theory has been developed for cold-bunches, i.e. bunches of electrons with zero initial momentum. Here, we briefly review this new theory and extend it to the cylindrically- and spherically-symmetric cases that have nonzero initial momentum. This formulation elucidates how charge-dominated bunches may be manipulated to maintain laminar conditions even through focussing of the bunch.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3