Affiliation:
1. Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
Abstract
Plasma-based accelerator technology enables compact particle accelerators. In Laser Wakefield Acceleration, with an ultrafast high-intensity optical laser driver, energy gain of electrons is greater if the electron density is reduced. This is because the energy gain of electrons is proportional to the ratio of laser’s critical density to electron density. However, an alternative path for higher energy electrons is increasing the critical density via going to shorter wavelengths. With the advent of Thin Film Compression, we now see a path to a single cycle coherent X-ray beam. Using this X-ray pulse allows us to increase the plasma density to solid density nanotube (carbon or porous alumina) regime and still be under-dense for a Laser Wakefield Acceleration technique. We will discuss some implications of this below.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献