Affiliation:
1. Centro de Física Computacional, Departamento de Física, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
Abstract
-1 The boson images of fermion SO(2N+1) Lie operators have been given together with those of SO(2N+2) ones. The SO(2N+1) Lie operators are generators of rotation in the (2N+1)-dimensional Euclidean space (N: number of single-particle states of the fermions). The images of fermion annihilation–creation operators must satisfy the canonical anticommutation relations, when they operate on a spinor subspace. In the regular representation space we use a boson Hamiltonian with Lagrange multipliers to select out the spinor subspace. Based on these facts, a new description of a fermionic SO(2N+2) top is proposed. From the Heisenberg equations of motions for the boson operators, we get the SO(2N+1) self-consistent field (SCF) Hartree–Bogoliubov (HB) equation for the classical stationary motion of the fermion top. Decomposing an SO(2N+1) matrix into matrices describing paired and unpaired modes of fermions, we obtain a new form of the SO(2N+1) SCF equation with respect to the paired-mode amplitudes. To demonstrate the effectiveness of the new description based on the bosonization theory, the extended HB eigenvalue equation is applied to a superconducting toy-model which consists of a particle–hole plus BCS-type interaction. It is solved to reach an interesting and exciting solution which is not found in the traditional HB eigenvalue equation due to the unpaired-made effects. To complete the new description, the Lagrange multipliers must be determined in the classical limit. For this aim a quasi-anticommutation relation approximation is proposed. Only if a certain relation between an SO(2N+1) parameter z and the N is satisfied, unknown parameters K and l in the Lagrange multipliers can be determined without any inconsistency.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献