INTEGRAL DOMAINS OF THE FORM A + XI[[X]]: PRIME SPECTRUM, KRULL DIMENSION

Author:

HIZEM SANA1,BENHISSI ALI1

Affiliation:

1. Department of Mathematics, Faculty of Sciences, 5000, Monastir, Tunisia

Abstract

Let A be an integral domain, X an analytic indeterminate over A and I a proper ideal (not necessarily prime) of A. In this paper, we study the ring [Formula: see text] First, we study the prime spectrum of R. We prove that the contraction map: Spec (A[[X]]) → Spec (R); Q ↦ Q ∩ R induces a homeomorphism, for the Zariski's topologies, from {Q ∈ Spec (A[[X]]) | XI[[X]] ⊈ Q} onto {P ∈ Spec (R) | XI[[X]] ⊈ P}. If P ∈ Spec (R) is such that XI[[X]] ⊆ P then there exists p ∈ Spec (A) such that P = p + XI[[X]]. Next, we study the Krull dimension of R. We give a necessary condition for R to be of finite Krull dimension. In particular, if R is of finite dimension then I must be an SFT ideal of A. Then we determine bounds for dim (R). Examples are given to indicate the sharpness of the results. In case I is a maximal ideal of A and A is either a Noetherian ring, SFT Prüfer domain or A[[X]] is catenarian and I SFT, we establish that dim (R) = dim (A[[X]]) = dim (A) + 1. Finally, we examine the possible transfer of the LFD property and the catenarity between the rings A, A[[X]] and R in case I is a maximal ideal of A.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noetherian Rings of the Form $${\mathcal {A}}[X,Y;\lambda ]$$;Acta Mathematica Vietnamica;2023-11-11

2. An associated sequence of ideals of an increasing sequence of rings: z-ideals, prime spectrum and Krull dimension;Journal of Algebra and Its Applications;2023-09-30

3. On purely-maximal ideals and semi-Noetherian power series rings;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2023-01-23

4. Isonoetherian power series rings III;Communications in Algebra;2022-06-21

5. Subrings of the power series ring over a principal ideal domain;Communications in Algebra;2021-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3