Compiling Granular Population Data Using Geospatial Information

Author:

FENZ KATHARINA1ORCID,MITTERLING THOMAS1ORCID,MARTINEZ ARTURO M.2ORCID,BULAN JOSEPH ALBERT NINO M.3ORCID,DURANTE RON LESTER S.3ORCID,MARTILLAN MARYMELL A.3ORCID,ADDAWE MILDRED B.3ORCID,ROITNER-FRANSECKY ISABELL4ORCID

Affiliation:

1. World Data Lab, Vienna, Austria

2. Asian Development Bank (ADB), Metro Manila, Philippines

3. ADB, Metro Manila, Philippines

4. Data Scientist, World Data Lab, Vienna, Austria

Abstract

Detailed data on the distribution of human populations are valuable inputs to research and decision making. This study aims at compiling data on population density that are more granular than government-published estimates and assessing different methods and model specifications. As a first step, we combine government-published data with publicly available data like land cover classes, elevation, slope, and nighttime lights, and then apply a random forest approach to estimate population density in the Philippines and Thailand at the 100 meter (m) by 100[Formula: see text]m level. Second, we use different specifications of random forest and Bayesian model averaging (BMA) techniques to forecast grid-level population density and evaluate their predictive power. The use of a random forest model showed that reasonable forecasts of grid-level population growth rates are achievable. The results of this study contribute to the assessment of methods like random forest and BMA in forecasting population distributions.

Funder

Asian Development Bank

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3