Evaluating a Water Conservation Response to Climate Change in the Lower Boise River Basin

Author:

Schmidt Robert D.1,Taylor R. Garth2

Affiliation:

1. Formerly Water Resources Research Institute, University of Idaho, Moscow, ID 83844, US

2. Department of Agricultural Economics, University of Idaho, Moscow, ID 83844, US

Abstract

Aquifers created or sustained by seepage losses from Bureau of Reclamation (Reclamation) Projects extend over vast areas of western states. Yet agricultural water conservation measures such as canal lining top the list of State and Federal policies for mitigating the effect of water shortages brought about by climate change. Cost benefit analysis (CBA) of new Reclamation water conservation infrastructure such as canal lining or piping is too often Project-specific, and detached from basin hydrology. The value of canal seepage as a positive externality is thus ignored in CBA. A basin-wide approach to hydro-economic modeling that accounts for the externalized costs and benefits of both canal seepage and new canal lining conservation insures that incidental aquifer recharge is recognized in CBA of Federally financed irrigation water conservation measures. Integrated hydrologic and partial equilibrium models are employed in the Lower Boise River basin to calculate the foregone benefit to non-project groundwater and drain water irrigation of a hypothetical Boise Project canal lining response to projected climate change water shortages. Basin-wide hydrologic response data is used to compute shifts in non-project groundwater supply functions and drain water supply constraints, and a base-case water supply scenario is compared to six climate change scenarios in which projected water shortages are offset by lining of project canals. The foregone net benefit to non-project groundwater and drain water irrigation resulting from elimination of the canal seepage externality (US$[Formula: see text]4.4–22.6[Formula: see text]million depending on the scenario) outweighs the increase in net benefit to Boise Project irrigation by canal lining (US$[Formula: see text]1.4–19.3[Formula: see text]million). On average, foregone groundwater and drain water irrigation benefit exceeds restored canal irrigation benefit by about 38%. Canal lining conservation is unable to restore total basin-wide irrigation net benefit to the base-case level in any of the climate change scenarios; rather it shifts the foregone benefit of climate change shortages from project canal irrigation to non-project groundwater and drain water irrigation. The canal lining CPA is not a complete accounting of either costs or benefits of canal lining conservation. On the cost side, only the foregone benefits of eliminating the positive canal seepage externality are calculated; construction and maintenance costs of canal lining are omitted. On the benefit side, Arrowrock canal irrigators are assumed to be the sole beneficiary of reduced seepage losses.

Publisher

World Scientific Pub Co Pte Lt

Subject

Management, Monitoring, Policy and Law,Economics and Econometrics,Water Science and Technology,Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3