MODELING AND ANALYSIS OF NOVEL COVID-19 UNDER FRACTAL-FRACTIONAL DERIVATIVE WITH CASE STUDY OF MALAYSIA

Author:

ALI ZEESHAN1,RABIEI FARANAK1ORCID,SHAH KAMAL2,KHODADADI TOURAJ3

Affiliation:

1. School of Engineering, Monash University Malaysia, 47500, Selangor, Malaysia

2. Department of Mathematics, University of Malakand, Dir(L), 18000, Khyber Pakhtunkhwa, Pakistan

3. Department of Information Technology, School of Science and Engineering, Malaysia University of Science and Technology, 47810, Selangor, Malaysia

Abstract

In this paper, new model on novel coronavirus disease (COVID-19) with four compartments including susceptible, exposed, infected, and recovered class with fractal-fractional derivative is proposed. Here, Banach and Leray–Schauder alternative type theorems are used to establish some appropriate conditions for the existence and uniqueness of the solution. Also, stability is needed in respect of the numerical solution. Therefore, Ulam–Hyers stability using nonlinear functional analysis is used for the proposed model. Moreover, the numerical simulation using the technique of fundamental theorem of fractional calculus and the two-step Lagrange polynomial known as fractional Adams-Bashforth (AB) method is proposed. The obtained results are tested on real data of COVID-19 outbreak in Malaysia from 25 January till 10 May 2020. The numerical simulation of the proposed model has performed in terms of graphs for different fractional-order [Formula: see text] and fractal dimensions [Formula: see text] via number of considered days of disease spread in Malaysia. Since COVID-19 transmits rapidly, perhaps, the clear understanding of transmission dynamics of COVID-19 is important for countries to implement suitable strategies and restrictions such as Movement Control Order (MCO) by the Malaysian government, against the disease spread. The simulated results of the presented model demonstrate that movement control order has a great impact on the transmission dynamics of disease outbreak in Malaysia. It can be concluded that by adopting precautionary measures as restrictions on individual movement the transmission of the disease in society is reduced. In addition, for such type of dynamical study, fractal-fractional calculus tools may be used as powerful tools to understand and predict the global dynamics of the mentioned disease in other countries as well.

Funder

Monash University Malaysia

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3