A NOVEL TRANSFORMER METHOD PRETRAINED WITH MASKED AUTOENCODERS AND FRACTAL DIMENSION FOR DIABETIC RETINOPATHY CLASSIFICATION

Author:

YANG YAOMING1ORCID,ZHA ZHAO2ORCID,ZHOU CHENNAN1ORCID,ZHANG LIDA1ORCID,QIU SHUXIA1ORCID,XU PENG13ORCID

Affiliation:

1. College of Science, China Jiliang University, Hangzhou 310018, P. R. China

2. Zhejiang Wandekai Fluid Equipment Technology Co., Ltd, Yuhuan 317609, P. R. China

3. Key Laboratory of Intelligent Manufacturing Quality, Big Data Tracing and Analysis of Zhejiang Province, Hangzhou 310018, P. R. China

Abstract

Diabetic retinopathy (DR) is one of the leading causes of blindness in a significant portion of the working population, and its damage on vision is irreversible. Therefore, rapid diagnosis on DR is crucial for saving the patient’s eyesight. Since Transformer shows superior performance in the field of computer vision compared with Convolutional Neural Networks (CNNs), it has been proposed and applied in computer aided diagnosis of DR. However, a large number of images should be used for training due to the lack of inductive bias in Transformers. It has been demonstrated that the retinal vessels follow self-similar fractal scaling law, and the fractal dimension of DR patients shows an evident difference from that of normal people. Based on this, the fractal dimension is introduced as a prior into Transformers to mitigate the adverse influence of lack of inductive bias on model performance. A new Transformer method pretrained with Masked Autoencoders and fractal dimension (MAEFD) is developed and proposed in this paper. The experiments on the APTOS dataset show that the classification performance for DR by the proposed MAEFD can be substantially improved. Additionally, the present model pretrained with 100,000 retinal images outperforms that pretrained with 1 million natural images in terms of DR classification performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Key Research and Development Program of Zhejiang Province

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3