NUMERICAL STUDY OF PORE STRUCTURE EFFECTS ON ACOUSTIC LOGGING DATA IN THE BOREHOLE ENVIRONMENT

Author:

LI TIANYANG123ORCID,WANG ZIZHEN12,YU NIAN4,WANG RUIHE12,WANG YUZHONG5

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China

2. Key Laboratory of Unconventional Oil and Gas, Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, P. R. China

3. Department of Physics, University of Alberta, Edmonton, Canada

4. School of Electrical Engineering, Chongqing University, Chongqing 400044, P. R. China

5. No. 2 Oil Production Plant Huabei Oilfield Company, PetroChina, Bazhou 065703, P. R. China

Abstract

Existing methods of well-logging interpretation often contain errors in the exploration and evaluation of carbonate reservoirs due to the complex pore structures. The differences in frequency ranges and measurement methods deviated between the acoustic well logs and indoor ultrasonic tests cause inconsistent results. Based on the elastic wave equation and the principle of the control variable method, a 2D axisymmetric borehole model with complex pore structures was developed, and the numerical simulation method for acoustic log was constructed. The modeling results show that the power function can well describe the effects of pore structure on the acoustic waves, while the velocity of the Stoneley wave is not sensitive to the pore structure. Crack-like pores with pore aspect ratio (AR) less than 0.1 significantly affect the velocities of P- and S-waves, whereas “spherical” pores have fewer effects. The models with larger pore sizes have high velocities of P- and S-waves. The velocities calculated by the equivalent medium theory are always higher than the numerical simulation results. The velocity deviation caused by the difference in frequency is much smaller than the pore structure. A fractal approach to quantify the effects of pore structures is applied in the acoustic logging data. The fractal dimension increases with the pore AR or size when the porosity is constant, which can be described by a simple power function. This gives us new ideas and methods for pore structure evaluation in the lower frequency range than the conventional petrophysical model.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities of the Central South University

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3