Detection and Correction of Abnormal Data with Optimized Dirty Data: A New Data Cleaning Model

Author:

Rahul Kumar1,Banyal Rohitash Kumar2

Affiliation:

1. Department of Basic and Applied Science, NIFTEM, Sonipat 131028, India

2. Department of Computer Science and Engineering, Rajasthan Technical University, Kota, 324010, India

Abstract

Each and every business enterprises require noise-free and clean data. There is a chance of an increase in dirty data as the data warehouse loads and refreshes a large quantity of data continuously from the various sources. Hence, in order to avoid the wrong conclusions, the data cleaning process becomes a vital one in various data-connected projects. This paper made an effort to introduce a novel data cleaning technique for the effective removal of dirty data. This process involves the following two steps: (i) dirty data detection and (ii) dirty data cleaning. The dirty data detection process has been assigned with the following process namely, data normalization, hashing, clustering, and finding the suspected data. In the clustering process, the optimal selection of centroid is the promising one and is carried out by employing the optimization concept. After the finishing of dirty data prediction, the subsequent process: dirty data cleaning begins to activate. The cleaning process also assigns with some processes namely, the leveling process, Huffman coding, and cleaning the suspected data. The cleaning of suspected data is performed based on the optimization concept. Hence, for solving all optimization problems, a new hybridized algorithm is proposed, the so-called Firefly Update Enabled Rider Optimization Algorithm (FU-ROA), which is the hybridization of the Rider Optimization Algorithm (ROA) and Firefly (FF) algorithm is introduced. To the end, the analysis of the performance of the implanted data cleaning method is scrutinized over the other traditional methods like Particle Swarm Optimization (PSO), FF, Grey Wolf Optimizer (GWO), and ROA in terms of their positive and negative measures. From the result, it can be observed that for iteration 12, the performance of the proposed FU-ROA model for test case 1 on was 0.013%, 0.7%, 0.64%, and 0.29% better than the extant PSO, FF, GWO, and ROA models, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power quantity data correction method based on improved DBSCAN density clustering algorithm;Fourth International Conference on Machine Learning and Computer Application (ICMLCA 2023);2024-05-22

2. Novel abnormal data correction method based on GA-RBF neural network considering power balance;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

3. Research on Edge Cloud Data Storage Method of Power Operation Site in Internet of Things Environment Based on Paxos Algorithm;Journal of Testing and Evaluation;2024-05-01

4. Dual-carbon data fusion cleaning model based on Kafka cluster;Second International Conference on Informatics, Networking, and Computing (ICINC 2023);2024-04-04

5. EQFF: An Efficient Query Method Using Feature Fingerprints;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3