MODEL SELECTION OF C-SUPPORT VECTOR MACHINES BASED ON MULTI-THREADING GENETIC ALGORITHM

Author:

SHI GUO-YOU1,LIU SHUANG23

Affiliation:

1. College of Navigation, Dalian Maritime University, Dalian, Liaoning 116026, P. R. China

2. School of Computer Science and Technology, Dalian University of Technology Dalian, Liaoning 116024, P. R. China

3. School of Computer Science and Engineering, Dalian Nationalities University, Dalian, Liaoning 116600, P. R. China

Abstract

Since generalization performance of support vector machines depends a lot on parameter values of kernel functions, it is important to select optimal parameter values. How to finish optimal model selection of C-Support Vector Machines (C-SVM) with satisfiable speed is the main focus of this paper. We can hardly finish training process for large data sets with traditional methods because of long time-consuming cost. To take advantage of multi-threading and genetic algorithms, we studied a hybrid model selection method to select C and sigma of RBF kernel function for C-SVM classifier. This new method not only chooses global optimal parameters, but also saves training time based on parallel computing process. Experimental results show the efficiency and feasibility of the new method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3