A new peak fitting method for 1D solid-state 29Si NMR spectra based on singular spectrum analysis

Author:

Li Guiliang1ORCID,Li Changjun1,Wei Nan1

Affiliation:

1. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China

Abstract

[Formula: see text]Si Nuclear Magnetic Resonance (NMR) can measure the molecular structure of silicate in oilfield reinjection water. However, noise in [Formula: see text]Si NMR spectra (NMRS) affects the determination of silicate molecular structure type. To solve this problem, a new peak fitting method (Two-step Greedy-Singular Spectrum Analysis-Gaussian Fitting Method, TSG-SSA-GFM) is proposed in this paper. This method first uses TSG to determine the embedding dimension, then uses SSA to determine the characteristic peak position. Finally, GFM is used to calculate the molar ratio of characteristic peaks. The results show that TSG can quickly determine the embedding dimension and reduce computation by at least 50% vs. the global ergodic method. The mean deviation of characteristic peak positions determined by SSA is 0.07 ppm, while Discrete Wavelet Transform (DWT) and Empirical Mode Decomposition (EMD) cannot determine characteristic peaks of [Formula: see text]Si NMRS containing overlapping peak. The average [Formula: see text]-squared of Gaussian fitting of [Formula: see text]Si NMRS is 98.4% while Lorentzian is 90.6%. Therefore, this study provides an important method for quantitative analysis of [Formula: see text]Si NMRS.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3