Synaptic clef segmentation method based on fractal dimension for ATUM-SEM image of mouse cortex

Author:

Ma Chao1,Shen Lijun1,Deng Hao2,Li Jialin3ORCID

Affiliation:

1. Faculty of Information Technology, Macau University of Science and Technology, Macau, China

2. College of Science, Huazhong Agricultural University, Wuhan, China

3. China Datang Corporation Renewable Energy Science, and Technology Research Institute, Beijing, China

Abstract

It is well known that neurons communicate through synapses in the nervous system, and the size, morphology, and connectivity of synapses determine the functional properties of the neural network. Therefore, synapses have always been one of the key objects of neuroscience. Due to the technical advance in electron microscope (EM), the physical structure of synapses can be observed at high resolution. Nevbarheless, to date, the automatic analysis of the synapse in EM images is still a challenging task. In this paper, we proposed a fractal dimension-based segmentation method for synaptic clef of mouse cortex on EM image stack. Our method does not require a lot of groundtruth to train the model, and shows better adaptive anti-noise performance. That should be ascribed to the stability of segmentation-related key parameters in the data from same tissue. In this way, we only need to give initial values, and then gradually adjust these key parameters. Experiments reveal that our method achieves the desired results, and reduces the time in artificial annotating, so that researchers can focus more on the analysis of segmentation results.

Funder

The Science and Technology Development Fund, Macau SAR

Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3