Affiliation:
1. Department of Electronics and Communication Engineering, National Institute of Technology Kurukshetra, Haryana 136119, India
Abstract
The shape of local window plays a vital role in the estimation of original signal variance, which is used to shrink the noisy wavelet coefficients in wavelet-based image denoising algorithms. This paper presents an anisotropic-shaped region-based Wiener filtering (ASRWF) and BayesShrink (ASRBS) algorithms, which exploit the region characteristics to estimate the original signal variance using a statistical approach. The proposed approach divides the region centered on a noisy wavelet coefficient into various non-overlapping subregions. The Euclidean distance-based measure is considered to obtain the similarities between reference subregion and adjacent subregions. An appropriate threshold value is estimated by applying a statistical approach on these distances and the sets of similar and dissimilar subregions are obtained from a defined region. Thus, an anisotropic-shaped region is obtained by neglecting the dissimilar subregions in a defined region. The variance of every similar subregion is calculated and then averaged to estimate the original signal variance to shrink noisy wavelet coefficients effectively. Finally, the estimated signal variance is utilized in Wiener filtering and BayesShrink algorithms to improve the denoising performance. The performance of the proposed algorithms is analyzed qualitatively and quantitatively on standard images for different noise levels.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献