Affiliation:
1. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, P. R. China
Abstract
In order to improve fused image quality of multi-spectral (MS) image and panchromatic (PAN) image, a new remote sensing image fusion algorithm based on robust principal component analysis (RPCA) and non-subsampled shearlet transform (NSST) is proposed. First, the first principle component PC1 of MS image is extracted via principal component analysis (PCA). Then, the component PC1 and PAN image are decomposed by NSST to get the low and high frequency subbands, respectively. For the low frequency subband, the sparse matrix of PAN image by RPCA decomposition is used to guide the fusion rule; for the high frequency subbands, the fusion rule employed is based on adaptive PCNN model. Finally, the fusion image is obtained by inverse NSST transform and inverse PCA transform. The experimental results illustrate that the proposed fusion algorithm outperforms other classical fusion algorithms (PCA, Curvelet, NSCT, NSST and NSCT-PCNN) in terms of visual quality and objective evaluation in whole, and achieve better fusion performance.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献