Beam commissioning and analysis of a continuous-wave window-type deuteron radio-frequency quadrupole

Author:

Tan Qiuyun1ORCID,Zhu Kun1,Gan Pingping1,Fu Qi1,Li Haipeng1,Easton Matt1,Liu Shuo1,Gao Shuli1,Wang Zhi1,Lu Yuanrong1,Dou Weiping2,Wu Qi2,Wang Chao2,He Yuan2,Zhao Hongwei2

Affiliation:

1. State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, P. R. China

2. Institute of Modern Physics Chinese Academy of Sciences, Lanzhou 730000, P. R. China

Abstract

As high-intensity beams are required for various applications, high-power, high-current, continuous-wave (CW) radio-frequency quadrupole (RFQ) accelerators have become a research focus in recent years and also a direction for development in the future. To master and accumulate the advanced technology in design, fabrication and operation of high-current CW RFQs, the RFQ group at Peking University has built a window-type CW RFQ, operating at 162.5[Formula: see text]MHz, to accelerate a 50-mA deuteron beam from 50[Formula: see text]keV to 1[Formula: see text]MeV. It is the first relatively high-frequency window-type CW RFQ in the world. A [Formula: see text] ion beam extracted from an electron cyclotron resonance (ECR) ion source was used for the beam commissioning because deuteron beam acceleration will produce a serious radiation risk. We compared and analyzed the measurement results obtained during the beam commissioning with simulations. The data show good consistency in many respects. For the discrepancies, we explain the issues in detail. We achieved stable and robust acceleration of about 1.5[Formula: see text]mA CW [Formula: see text] for 1[Formula: see text]h. Finally, we discuss the differences between [Formula: see text] ion beam acceleration and deuteron beam acceleration.

Funder

National Basic Research Program of China

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3