Fragmentation of carbon on elemental targets at 290AMeV

Author:

Duan Hai-Rui1,Wu Jing-Ya1,Ma Tian-Li12,Li Jun-Sheng1,Li Hui-Ling1,Xu Ming-Ming1,Yang Rui-Xia1,Zhang Dong-Hai1ORCID,Zhang Zhi12,Wang Qi3,Kodaira S.4

Affiliation:

1. Institute of Modern Physics, Shanxi Normal University, Linfen 041004, P. R. China

2. China Institute of Atomic Energy, P. O. Box 275 (96), Beijing 102413, P. R. China

3. Linfen Occupational Technology College, Linfen 041000, Shanxi, P. R. China

4. Radiation Measurement Research Section, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan

Abstract

The total charge-changing cross-sections and the partial cross-sections for projectile fragments (PFs) production for the fragmentation of 12C on C, Al, Cu, Pb and CH2 targets at the highest energy of 290[Formula: see text]A[Formula: see text]MeV were studied. It was found that the total charge-changing reaction cross-sections and the partial reaction cross-sections of PFs production were independent of the beam energy, and increased with increase of mass of target for the same beam energy. The total charge-changing reaction cross-section was the same as the prediction of Bradt–Peters semi-empirical formula, PHITS and NUCFRG2 simulation models. The partial cross-section of PFs production increased with the increase of the mass of target, and it was the same as the prediction of NUCFRG2 models. The mean scattering angle of projectile particle was smaller than the average emission angle of PF, and the width of scattering angle distribution of projectile particle was smaller than that of emission angle distribution of PFs. The mean emission angle of PFs does not obviously depend on the target mass and beam energy in our studied beam energy regions.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3