Francium trapping at the INFN-LNL facility

Author:

Mariotti E.1,Khanbekyan A.1,Marinelli C.1,Marmugi L.1,Moi L.1,Corradi L.2,Dainelli A.2,Calabrese R.3,Mazzocca G.3,Tomassetti L.3

Affiliation:

1. INFN, CNISM and DSFTA, University of Siena, via Roma 56, 53100 Siena, Italy

2. INFN - Laboratori Nazionali di Legnaro, viale dell'Università 2, 35020 Legnaro (PD), Italy

3. University of Ferrara and INFN, via Saragat 1, 44122 Ferrara, Italy

Abstract

A brief review of the Francium trapping experiments at the INFN-LNL facility is presented in the wide context of Atomic Parity-Nonconservation (APNC), which, as long as acquiring more precise and new spectroscopic data on the Francium isotopes, is the ultimate goal of the experiment. Due to its instability, Francium atoms must be produced continuously by a nuclear fusion–evaporation reaction into a heated Gold target hit by a beam of accelerated oxygen ions. Francium is then extracted in the ionic form and guided by an electrostatic line to the actual science chamber, where the ions are neutralized. Atoms are then cooled down and trapped in a Magneto-Optical Trap (MOT) to ensure both the availability of a sufficiently populated and stable atomic sample and to eliminate the Doppler broadening which would affect the precision of the measurements. A review of the recent improvements to the experimental apparatus and to the detection techniques that led to a sensitivity better than five atoms is presented. The final part of this paper deals with a summary of the recent results obtained by our collaboration and a short outlook for the immediate future.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3